

ISCC / PRIMA Conference, San Francisco, April 6, 2017

Verification of CI and Prevention of Land Use Change in Global Biofuel Supply

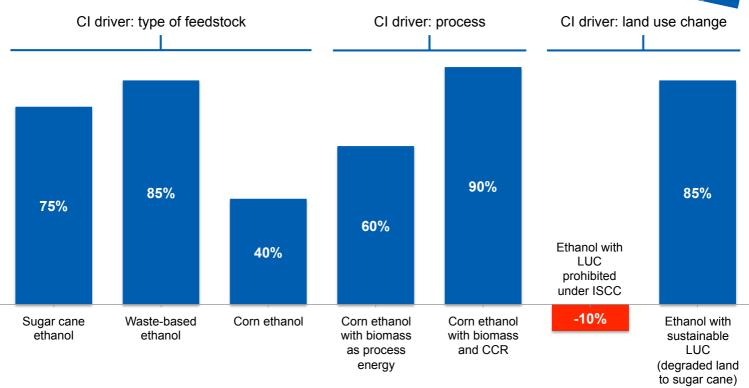
Dr Jan Henke, ISCC System GmbH

Without secure verification of carbon intensity (CI) and prevention of land use change (LUC) low carbon fuel policy is at risk

Carbon intensity:

- · CI values might not reflect reality with respect to
 - Feedstock
 - Process
 - Supply chain

Land use change


- Cutting or burning down of rainforests
- Loss of land with high biodiversity value or high carbon stocks
- · High impact on CI, which can easily become negative

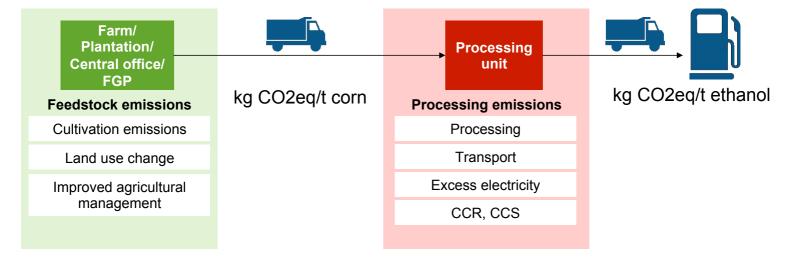
© ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

2

ISCC verifies key drivers of the CI number throughout the supply chain – Example ethanol

© ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

3


Low carbon fuels policy must protect no go areas and verify the type of LUC

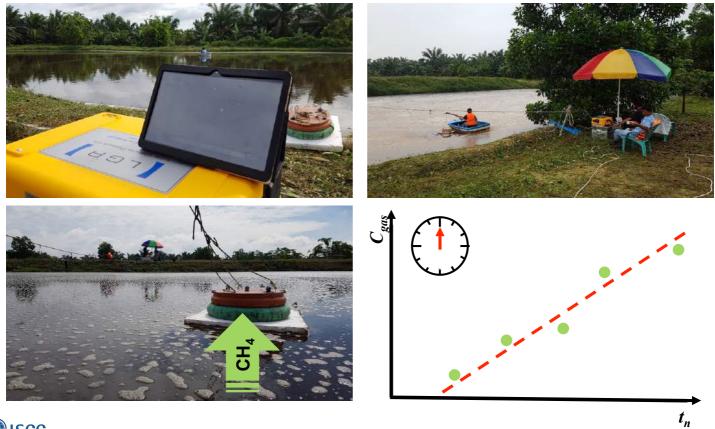
© ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

ISCC verifies individual GHG calculations. Verification takes place at the supply chain element where emissions occur

 $\ensuremath{\textcircled{\sc 0}}$ ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

5

Based on a defined methodology, ISCC guidance and specific on-site situation, companies conduct their CI calculations


	Greenhouse g		Guarantee successful			
				Meo Carbon Solutions GmbH Hohenzollemring 72 D-50672 Köln		audit
General data	Address Name Street, Number Postal Code, City Contact person					 Specific calculator based on individual setup
Gener	Production capacity bioethanol					 Calculation according to ISCC methodology
ial	Production main product Bioethanol production	12.100.000,0	L/annum	Source Calibrated tanks		 Fully transparent calculation
related to raw material	Production by-product No by-products Production waste and residues			Source Source		 Easy to update
ed to ra	Waste yeast Other wastes	200,0 365.659,0	t/annum L/annum	Yeast production plan & effluent loadings Calibrated tanks		 All data sources,
late	Main raw material Raw material	628,283	t/annum	Source		evidence, references,
ns re	Greenhouse gas value of raw material	0,0	kg CO ₂ e/t	Categorization of raw material as waste. Individual and country specific analysis regarding the categorization as waste or as by-product may be required.		literature documented
ssio	Conversion factor					
Emissions	Bioethanol production	19,26	L Ethanol/ t raw material			Usable for certification
	Emissions related to raw material					audit
	Raw material	0.00	kg CO ₂ e/ annum kg CO ₂ e/L Bioethanol			aunt

Source: Meo Carbon Solutions GmbH

 $\ensuremath{\textcircled{\sc 0}}$ ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

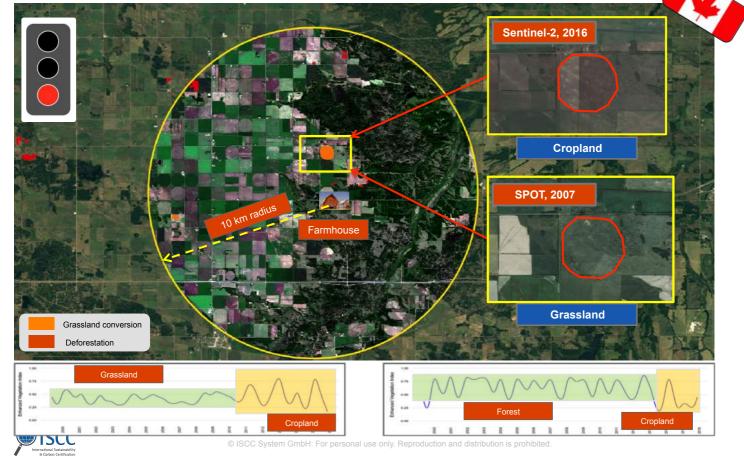
Specific situation on the ground – example palm oil mill

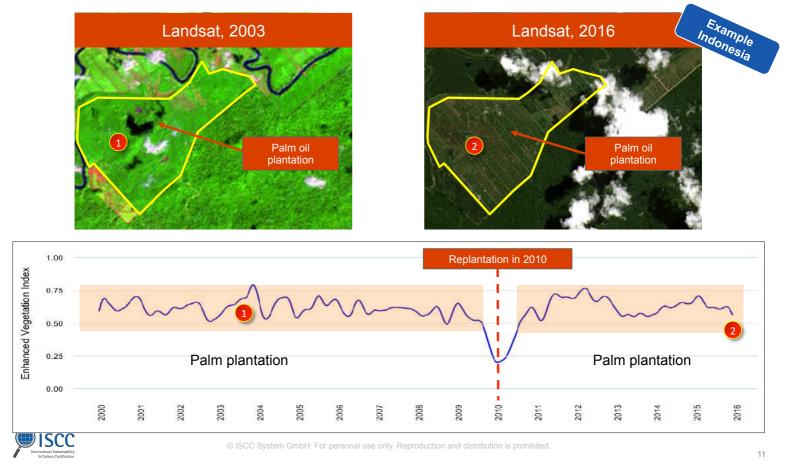
© ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

ISCC provides procedures and tools for secure CI verification. This can also be input to CI pathways

- ISCC ensures a level playing field with respect to GHG calculations and CI numbers reported
- ISCC GHG Training for auditors and system users
- Mandatory audit procedures, guidance, verification and reporting requirements to be used by auditors
- Auditors need to verify GHG calculation prior to the audit
- ISCC Integrity Program:
 - Upfront GHG verification by ISCC GHG experts

 $\ensuremath{\textcircled{\sc line 0.5ex}}$ ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.


ISCC uses GRAS for sustainability risk analysis and the detection of land use change



© ISCC System GmbH: For personal use only. Reproduction and distribution is prohibited.

Example canola: GRAS can identify the conversion from forest or grassland to cropland in a buffer area around farmhouse

Example palm oil: GRAS can clearly identify replanting activities and does not show those as deforestation

Many thanks for your attention!

Contact

Dr Jan Henke ISCC System GmbH Hohenzollernring 72 D-50672 Cologne, Germany Email: info@iscc-system.org Tel: +49 221 1793 2966 Fax: +49 221 941 5863

