

ISCC Stakeholder Meeting Southeast Asia, Penang, December 6, 2016

Methane Measurements on POME ponds – what are they good for?

International Sustainability
8t Carbon Certification

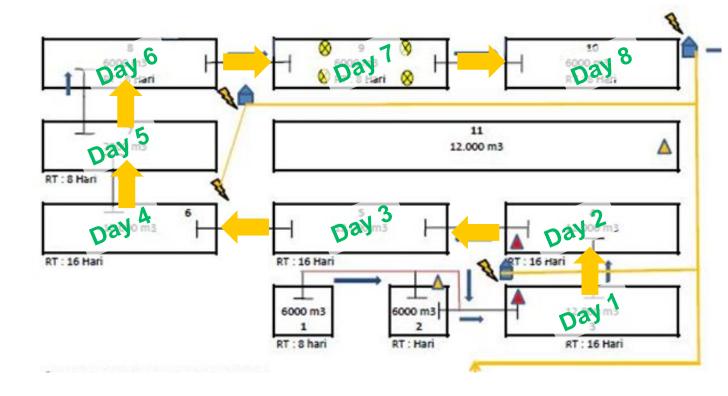
Methane measurements – idh funded project with KLK, Neste and ISCC partnering

Methane measurements
of POME ponds
in order to develop a GHG
emissions reduction method

Evaluation of results and development of a GHG methodology

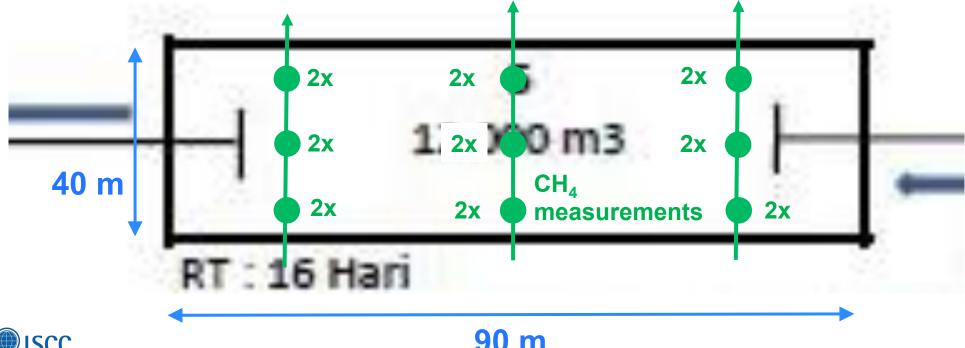
Methodology development

Introduction of the methodology into the ISCC certification system



Communication of results via seminars and publications

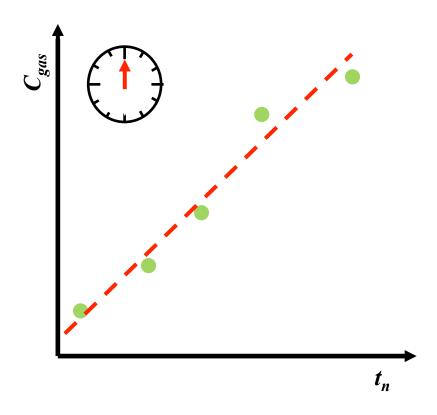
Design of measurement setup (I)


- Ponds are measured in transects on a daily rotational mode for CH₄
 - I.e. one CH₄ measurement
 rotation for all (three
 aerobic and five
 anaerobic) ponds will
 take 8 days
- After 8 days
 measurements are
 repeated twice (three
 rotation mode)

Design of measurement setup (II)

- Ponds are measured in three transects on a daily rotational mode for CH₄
 - I.e. one CH₄-measurement rotation for all (aerobic and anaerobic) ponds will take 8 days
- Every transect has three measuring points repeated twice
- Chamber closure time is five minutes

Design of measurement setup (III)


- For the day of CH₄-measurement of each pond, COD (Chemical Oxygen Demand)
 samples will be taken from 3 different depths (50cm, 150 cm, 300 cm) close to inlet and outlet of the ponds (= 6 COD samples per day)
- Water temperatures will be recorded with logging devices every 30 minutes in different depths (50cm, 150 cm, 300 cm) over several days in each pond

Chamber is placed over the pond surface and "catches" the emitting gas

Assessing the CH₄ emission is based on identifying the increase of gas concentration over time within the chamber volume

$$r_{CH_4}[\mu g \cdot C \cdot m^{-2} \cdot h^{-1}] = \frac{M[g \cdot mol^{-1}] \cdot P[Pa] \cdot V[m^3] \cdot \delta v[ppm(v)] \cdot f_1}{R[m^3 \cdot Pa \cdot K^{-1} \cdot mol^{-1}] \cdot T[K] \cdot t[h] \cdot A[m^2]}$$

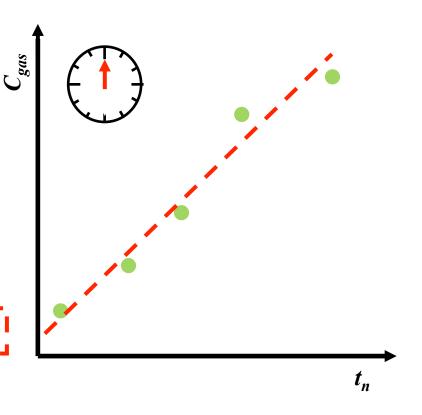
 r_{CH_4} : $Gas\ flux(e.g.CH_4)$

M: molar mass

P: barometric pressure

V: chamber headspace (volume)

R: constant

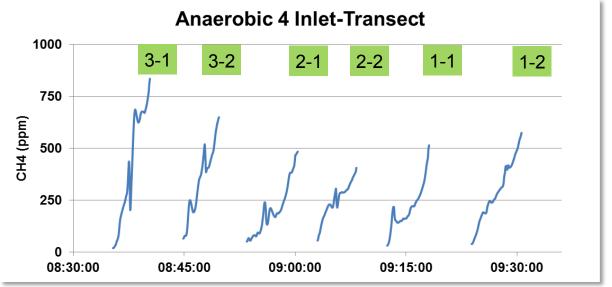

T: temperature

t: time

A: size of observed area

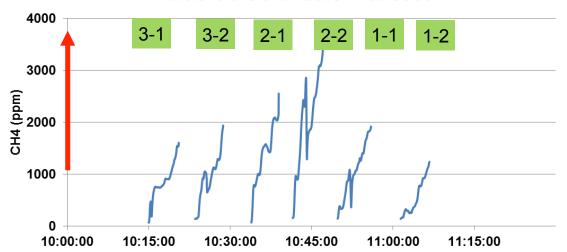
 f_1 : elementary part of observed gas molecule

 δv : observed slope of gas concentration c_{gas} over time t_n



A first look into the data: Examples of different emission levels in the ponds (I)

- Preliminary results (as rough estimate!) from anaerobic pond 4 Inlet-Transect from November 30, 2016
- Average of 197.1 **mg** CH₄ m⁻² per hour
- \rightarrow 47.3 kg CH₄ ha⁻¹ per day
- \rightarrow Equals to 1.18 t of CO₂-equiv. ha⁻¹ per day



A first look into the data: Examples of different emission levels in the ponds (II)

- Preliminary results (as rough estimate!) from anaerobic pond 3 Middle-Transect from November 29, 2016
- Average of 615.8 **mg** CH₄ m⁻² per hour
- \rightarrow 147.8 kg CH₄ ha⁻¹ per day
- \rightarrow Equals to 3.69 t of CO₂-equiv. ha⁻¹ per day

Anaerobic 3 Middle-Transect

Contact

Andreas Feige Managing Director ISCC System GmbH Hohenzollernring 72 D-50672 Cologne, Germany

